8 research outputs found

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Block-transitive 3-designs with affine automorphism group

    No full text

    Gabor frames in finite dimensions

    No full text
    Gabor frames have been extensively studied in time-frequency analysis over the last 30 years. They are commonly used in science and engineering to synthesize signals from, or to decompose signals into, building blocks which are localized in time and frequency. This chapter contains a basic and self-contained introduction to Gabor frames on finite-dimensional complex vector spaces. In this setting, we give elementary proofs of the central results on Gabor frames in the greatest possible generality; that is, we consider Gabor frames corresponding to lattices in arbitrary finite Abelian groups. In the second half of this chapter, we review recent results on the geometry of Gabor systems in finite dimensions: the linear independence of subsets of its members, their mutual coherence, and the restricted isometry property for such systems. We apply these results to the recovery of sparse signals, and discuss open questions on the geometry of finite-dimensional Gabor systems
    corecore